Broadband ultraviolet-visible transient absorption spectroscopy in the nanosecond to microsecond time domain with sub-nanosecond time resolution.

نویسندگان

  • Bernhard Lang
  • Sandra Mosquera-Vázquez
  • Dominique Lovy
  • Peter Sherin
  • Vesna Markovic
  • Eric Vauthey
چکیده

A combination of sub-nanosecond photoexcitation and femtosecond supercontinuum probing is used to extend femtosecond transient absorption spectroscopy into the nanosecond to microsecond time domain. Employing a passively Q-switched frequency tripled Nd:YAG laser and determining the jitter of the time delay between excitation and probe pulses with a high resolution time delay counter on a single-shot basis leads to a time resolution of 350 ps in picosecond excitation mode. The time overlap of almost an order of magnitude between fs and sub-ns excitation mode permits to extend ultrafast transient absorption (TA) experiments seamlessly into time ranges traditionally covered by laser flash photolysis. The broadband detection scheme eases the identification of intermediate reaction products which may remain undetected in single-wavelength detection flash photolysis arrangements. Single-shot referencing of the supercontinuum probe with two identical spectrometer/CCD arrangements yields an excellent signal-to-noise ratio for the so far investigated chromophores in short to moderate accumulation times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of external-cavity quantum cascade infrared lasers to nanosecond time-resolved infrared spectroscopy of condensed-phase samples following pulse radiolysis.

Pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is a powerful method for rapidly generating reduced or oxidized species and other free radicals in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timesca...

متن کامل

Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy.

We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of ∼100 ns, which is the fastest thermal back reaction in all reported imidazole dimers. Sub-ps transient absorption spectroscopy reveals that the generation process of the colored species occurs within 1 ps.

متن کامل

Fast events in protein folding initiated by nanosecond laser photolysis.

Initiation of protein folding by light can dramatically improve the time resolution of kinetic studies. Here we present an example of an optically triggered folding reaction by using nanosecond photodissociation of the heme-carbon monoxide complex of reduced cytochrome c. The optical trigger is based on the observation that under destabilizing conditions cytochrome c can be unfolded by preferen...

متن کامل

Use of Laser Spectroscopy for High-Accuracy Investigations of Relatively-Dilute Pulsed Plasmas with Nanosecond Time Resolution

In this report we describe the development of new approaches to measure the electric field and properties of relatively dilute plasmas under high-power pulses at the nanosecond time scale. These approaches are based on high-resolution laser spectroscopy. The study is carried out in a coaxial-pulsed-plasma configuration. The plasma was doped with a laser-produced lithium beam, followed by pumpin...

متن کامل

Laser induced breakdown spectroscopy of pure aluminum with high temporal resolution.

We report on a Laser Induced Breakdown Spectroscopy (LIBS) system with a very high temporal resolution, using femtosecond and picosecond pulse laser excitation of pure aluminum (Al). By using a 140 fs Ti:Sapphire laser in an ultrafast optical Kerr gate (OKG), we demonstrate LIBS sampling with a sub-ps time resolution (0.8 ± 0.08 ps) in a 14 ns window. The width of the gating window in this syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 84 7  شماره 

صفحات  -

تاریخ انتشار 2013